
UCRL-PROC-208350

The Implementation of the Finite-Volume
Dynamical Core in the Community
Atmosphere Model

W. B. Sawyer, A. A. Mirin

December 2, 2004

First Indo-German Conference on PDE, Scientific Computing
and Optimization in Applications
Trier, Germany
September 8, 2004 through September 10, 2004



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



The Implementation of the Finite-Volume

Dynamical Core in the Community

Atmosphere Model

William B. Sawyer a,b

aSwiss Federal Institute of Technology (ETHZ), Seminar for Applied Mathematics
Rämistrasse 101, Zürich, 8092 Switzerland

bGlobal Modeling and Assimilation Office (GMAO), Goddard Space Flight Center
Greenbelt, MD 20771 USA

Arthur A. Mirin c

cLawrence Livermore National Laboratory, Livermore, California, 94550 USA

Abstract

A distributed memory message-passing parallel implementation of a finite-volume
discretization of the primitive equations in the Community Atmosphere Model is
presented. These three-dimensional equations can be decoupled into a set of two-
dimensional equations by the introduction of a floating vertical coordinate, resulting
in considerable potential parallelism. Subsequent analysis of the data dependencies
— in particular those arising from the polar singularity of the latitude-longitude
coordinate system — suggests that two separate domain decompositions should be
employed, each tailored for a different part of the model. The implementation re-
quires that data be periodically redistributed between these two decompositions.
Furthermore, data from nearest neighbors are kept in halo regions, which are up-
dated between iterations. These data movements are optimized through one-sided
communication primitives and multithreading. The resulting algorithm is shown to
scale to very large machine configurations, even for relatively coarse resolutions.

Key words: Atmospheric Dynamics, Primitive Equations, Finite-Volume Methods,
Parallel Computing
PACS: 92.60.Bh

1 Introduction

Atmospheric general circulation models (AGCMs) are key tools for weather
prediction and climate research. They also require large computing resources:

Preprint submitted to Elsevier Science 9 December 2004



even the largest current supercomputers cannot keep pace with the desired in-
creases in the resolution of these models. AGCMs consist, roughly speaking, of
the dynamics, which calculates the atmospheric flow, and the physics, in which
parameterizations for subgrid phenomena such as long- and short-wave radia-
tion, moist processes, and gravity wave drag, are approximated. The physical
parameterizations will not be discussed further here. We concentrate on the
finite-volume (FV) solver of the dynamics (the dynamical core) which requires
a substantial fraction of the overall computational time of the Community
Atmosphere Model (CAM, part of the Community Climate System Model
[2]).

The mathematical formulation of the primitive equations is presented in Sec.
2, and the finite-volume discretization in Sec. 3. An analysis of the data de-
pendencies of the scheme and their implications for the domain decomposition
on parallel computers are given in Sec. 4. In Sec. 5, an overview of the parallel
implementation is presented. Results are presented in Sec. 6, where it is seen
that the approach scales well to very large machine configurations. Additional
conclusions and future directions are presented in Sec. 7.

2 Mathematical Formulation

We consider an atmosphere in hydrostatic balance:

1

ρ

∂p

∂z
= −g, (1)

where ρ is the density, p the pressure, and g the force per unit mass due
to gravity. This physically justified assumption is part of the primitive equa-
tions describing atmospheric motion, of which the conservation of mass and
momentum are the most relevant here:

∂ρ

∂t
=−~∇3 · (ρ~v), (2)

d~v

dt
=−1

ρ
~∇3p− ~∇3Φ + ~F − 2Ω× ~v, (3)

where Φ is the geopotential, ~F is the frictional force (which will not be con-
sidered further in this work), and Ω is the earth’s angular velocity. We use
~∇3 to explicitly designate the three-dimensional gradient operator to avoid
confusion with the horizontal gradient which will be used subsequently. The
full set of the primitive equations can be found in [5]. In this work, only the

2



horizontal wind components will be considered. In this case, the Coriolis term
2Ω× ~v is replaced by its horizontal component, f ≈ 2Ω sin θ.

In place of z, a general vertical coordinate ζ can be introduced if a bijective
transformation exists:

z ←→︸ ︷︷ ︸
T ,T −1

ζ. (4)

That is to say, ζ is a monotone function of z. There are a number of sensi-
ble choices for ζ (see [5]), for example, ζ can represent isentropic or terrain-
following coordinates. The gradient of a scalar quantity Q(x, y, ζ) can be writ-
ten as,

~∇ζQ = ~∇zQ +
∂Q

∂ζ

∂ζ

∂z
~∇ζz, (5)

where the subscript of ~∇ indicates which horizontal surface, ζ or z, remains
constant in the vertical. The mass continuity and horizontal momentum equa-
tions in ζ coordinates become,

d

dt

(
ln

∂p

∂ζ

)
+ ~∇ζ · ~vH +

∂ζ̇

∂ζ
= 0, (6)

d~vH

dt
+

1

ρ
~∇ζp + ~∇ζΦ− ~F + f~k × ~vH = 0. (7)

To simplify the mass conservation in ζ, a pseudo-density π can be defined:

π = −∂Φ

∂ζ
ρ. (8)

The conservation of total air mass and the mass of an arbitrary set of tracers
(such as water vapor) can then be succinctly formulated [6],

∂π

∂t
+ ~∇ζ · (~vπ) = 0, (9)

∂πqi

∂t
+ ~∇ζ · (~vπqi) = 0, (10)

where qi is the mixing ratio of the tracer i. In a Lagrangian frame — in which
a control volume glides between constant ζ surfaces — the operator ~∇ζ is
two-dimensional.

3



In the absence of friction ~F , Eq. 7 can be written in latitude-longitude coor-
dinates in its vector-invariant form with spherical coordinates [1]:

∂u

∂t
= ηv − 1

R cos θ

[
∂

∂λ
(κ + Φ) +

1

ρ

∂p

∂λ

]
− dζ

dt

∂u

∂ζ
, (11)

∂v

∂t
= −ηu− 1

R

[
∂

∂θ
(κ + Φ) +

1

ρ

∂p

∂θ

]
− dζ

dt

∂v

∂ζ
, (12)

where R is the earth’s radius, η = 2Ω sin θ +
[

∂
∂λ

v − ∂
∂θ

(u cos θ)
]
/R cos θ is the

absolute vorticity, and κ = (u2 + v2)/2 is the kinetic energy.

3 Finite-Volume Discretization

A finite-volume approach was proposed in [8] in which the cell-averaged values
of a physical quantity Q̄ are defined as,

Q̄i,j =
1

Ai,j

λi+∆λ/2∫
λi−∆λ/2

θj+∆θ/2∫
θj−∆θ/2

Q(t; λ, θ)dθ dλ, (13)

can be updated through the upwind integral,

Q̄n+1
i,j = Q̄n

i,j −
1

Ai,j

t+∆t∫
t

∮
Q(τ ; λ, θ)~v · ~n dl dτ. (14)

Ai,j is the area of finite volume i, j. In this work, we consider only constant
interval lengths ∆λ and ∆θ and thus, Ai,j = R2∆θ∆λ cos θj.

A number of numerical approximations for Eq. 14 were proposed in [8]. The
main discretization scheme split the 2-D flux integral into two orthogonal
flux-form transport operators:

F (u∗, ∆t, Q̄) =− ∆t

R∆λ cos θ
δλ[X (u∗, ∆t; Q)], (15)

G(v∗, ∆t, Q̄) =− ∆t

R∆θ
δθ[Y(v∗, ∆t; Q)], (16)

where δ is a difference operator on the argument values taken at neighboring
gridpoints, and (u∗, v∗) is an approximation of time-averaged values of ~v across

4



a cell wall. X and Y are the time-accumulated flux operators,

X (u, ∆t; Q) =

t+∆t∫
t

uQdτ, (17)

Y(v, ∆t; Q) =

t+∆t∫
t

vQdτ. (18)

For the reconstruction of Q from Q̄, the Piecewise Parabolic Method [3] is
generally used. The PPM method imposes a monotonicity constraint on the
1-D discrete solution, though it does not ensure monotonicity in the overall
2-D solution. In [6] the PPM constraints were relaxed to improve performance
and reduce diffusivity. Furthermore, the Lagrangian frame was suggested in
which ζ remains constant for some period of time after which it is remapped to
a fixed vertical coordinate. In the Lagrangian frame, Eqs. 2, 11 and 12 can be
decoupled into a set of two-dimensional equations. These equations are closely
related to the shallow-water equations on the sphere (SWES):

∂h

∂t
+ ~∇ · (~vh) = 0, (19)

∂~v

∂t
+ (ζ + f)~k × ~v + ~∇(κ + Φ) = 0, (20)

where ‘heights’ h have take the place of density ρ. A solution method to Eqs.
19 and 20 was suggested in [8]:

∆h = F (u∗, ∆t; hθ) + G(v∗, ∆t; hλ), (21)

∆u

∆t
=Y(v∗, ∆t; ηλ)− 1

A∆λ cos θ
δλ

[
κ∗ + Φn+1θ

λ
]
, (22)

∆v

∆t
=X (u∗, ∆t; ηθ) +

1

A∆θ
δθ

[
κ∗ + Φn+1λ

θ
]
, (23)

where X (ηθ) and Y(ηλ) are time-accumulated fluxes of ηθ and ηλ as per Eqs.
17 and 18 using an intermediate velocity u∗ and v∗. In addition to this overall
time step, there is a ∆t/2 predictor step to determine u∗, v∗ and κ∗ on the
grid with an offset of ∆x/2 and ∆y/2. Thus, this method is referred to as a
two-grid and two-time-step method.

5



4 Data Dependency Analysis

The neighborhood of points needed for one iteration of Eqs. 15 and 16 is deter-
mined by the spatial accuracy order of the algorithm, ∆t, and the geographical
separation of the grid points, as dictated by the dimensionless Courant num-
bers:

Cλ =
u∆t

R∆λ cos θ
, Cθ =

v∆t

R∆θ
. (24)

In latitude θ, the geographical separation is constant. Therefore, if ∆t is cho-
sen appropriately, and the wind speeds, u and v, remain in an atmospherically
realistic range, only the accuracy order of the transport algorithm is signif-
icant. Thus there are limited north-south neighbor dependencies (1, 2, or 3
lines of latitude) on each level.

A similar statement for the the horizontal transport calculation in λ is, on
the other hand, not possible. In order to accommodate the ‘pole problem’
of converging meridians near the pole, a quasi-Lagrangian approach [7] is
employed. 1 This approach varies slightly from the classical semi-Lagrangian
formulation, which determines where a departure point arrives after being
advected for a time ∆t. Instead, this formulation determines how the mass in
the departure cell is distributed after a time step ∆t. This formulation is crucial
because it ensures that mass is conserved, while the classical formulation does
not.

For the quasi-Lagrangian approach in [7], any given longitudinal Courant num-
ber Cλ

i−1/2 at the edge between cells i− 1 and i can be greater than one, and
thus written as,

Cλ
i−1/2 = Ki−1/2 + ci−1/2, (25)

where Ki−1/2 is the integer part of Cλ
i−1/2 and ci−1/2 = mod(Cλ

i−1/2, Ki−1/2) is
the fractional Courant number. Similarly, the flux at the left edge of the cell
is decomposed into two parts:

Xi−1/2 = (integer flux)i−1/2 + (fractional flux)i−1/2. (26)

While the details of this algorithm are not important here, the upshot is
that the method has dependencies on grid points which are at geographical

1 This approach for longitudinal flow should not be confused with the floating
Lagrangian coordinate discussed earlier, which is purely vertical and ensures that
the problem decouples into a set of 2-D problems.

6



distances dictated by the departure cell for a given ∆t. Near the poles, this set
goes well beyond the immediate east-west neighbors. These data dependencies
are illustrated in Fig. 1.

Fig. 1. The diagram at left depicts the different algorithms used for transport of
vorticity near the poles in the finite-volume scheme. An Eulerian algorithm is used
in the latitudinal direction, while a quasi-Lagrangian is used in the longitudinal
direction. The departure cell in the quasi-Lagrangian algorithm can be many cells
away from the target. This gives rise to data dependencies (right) which are fixed
in latitude (i.e. nearest north-south neighbors independent of latitude, given here
for −60oS), while the west-east data dependencies (here for the prime meridian)
are a function of latitude. This is only an approximate illustration; the precise data
dependencies are also a function of the wind variables and will change between time
steps.

As most atmospheric models, CAM is implemented on state-of-the-art dis-
tributed memory parallel supercomputers. The successful parallelization of
the FV dynamical core is determined to a large extent by the required data
traffic between processors. It is therefore imperative to locate the data on the
processors in a way which minimizes inter-processor communication. Judged
from this standpoint alone, the ideal data layout, or domain decomposition,
would appear to be a set of latitude slabs, or decomposition elements (DEs), as
illustrated in Fig. 2. Any given latitude resides in only one DE, avoiding the
issues associated with the quasi-Lagrangian scheme for east-west transport.
Furthermore, any given vertical profile is also in one DE, important for the
vertical integrations (such as the solution of the hydrostatic equation) and all
of the physical parameterizations in CAM.

The 1-D decomposition was successfully used in CAM and other applications
of the FV dynamical core. Unfortunately, with growing computer size, the
inherent parallelism is no longer sufficient for very large multi-processor ma-
chines. For such machines it is necessary to decompose the data in a second
dimension. But which dimension is ideal? Cutting in longitude creates exces-
sive inter-processor dependencies near the pole, while distributing the vertical
components creates extensive communication for vertical integrations and in
the physical parameterizations.

We have chosen a technique with two alternate domain decompositions. The
domain is decomposed by latitude and level (lat-lev) to solve equations 21, 22,

7



Fig. 2. The 1-D algorithm decomposes the latitude-longitude-level domain into a
set of latitude slabs. Each slab has a north and south halo region, which covers
the latitudinal data dependencies. These halo regions are filled (‘halo exchange’)
in a communication phase which can be overlapped with unrelated calculation. The
calculation on haloed arrays can then take place subsequently without further com-
munication.

and 23 in the Lagrangian frame. For the remainder of the dynamical core and
in all of the physical parameterizations, the domain is decomposed in latitude
and longitude (lat-lon). The use of two domain decompositions requires the
constituent arrays to be redistributed or transposed from lat-lev to lat-lon
before the vertical calculation and back thereafter. We have implemented this
technique, putting much emphasis on a highly optimized transpose operation.

5 Parallel Implementation

The 2-D domain decomposition has been extensively discussed in [12]. Only
the key points will be treated here.

The FV dynamical core consists of a component (referred to hereafter as
cd core) which operates on L independent levels in the vertically Lagrangian
frame to essentially solve equations 21, 22, and 23, and a remapping algorithm
(hereafter te map) which consists of the vertical remapping [6] from the La-
grangian frame back to the original vertical coordinate. It is also necessary
to solve the hydrostatic equation (geopk) at each step, which is inherently a
vertical integration. Finally, tracers are advected horizontally in trac2d. All
of these components were first parallelized with the OpenMP shared memory
multitasking paradigm [4], and obtained respectable performance on up to
16-32 CPUs on an SGI Origin 2000 [11].

The initial FV dynamical core implementation utilized two-sided communi-
cation — the only type supported by the MPI-1 standard [9] — namely
MPI Isend and MPI Irecv primitives. Furthermore it utilized both a send
buffer into which the data to be transfered are packed, and a receive buffer,
from which the data are unpacked. An optimization to this defined MPI de-

8



rived datatypes for the send and receive descriptors, circumventing the user
buffers.

The code was then upgraded to use the enhanced MPI-2 standard which of-
fers one-sided communication through the MPI Put and MPI Get primitives.
One-sided communication requires MPI-2 windows to define the segments of
memory that receive remote data. These windows can utilize the MPI de-
rived datatypes described previously. Several communication approaches us-
ing MPI-2 were implemented, among them a straightforward scheme (Method
A) utilizing both a send and receive buffer, and an optimized scheme (Method
B), needing only a receive buffer. Other methods utilizing both MPI-2 and
derived datatypes were also implemented. Unfortunately, this combination of
functionality is not currently supported on the SGI Origin 3800 target plat-
form.

In addition, the possibility is available on some platforms to multithread the
one-sided communication. This can be done in different ways. First, a large
block to be sent from a given DE to another is broken into a set of smaller
blocks; the delivery of this set with MPI Put is multithreaded. The second pos-
sibility is to multithread the delivery of all blocks from one DE with MPI Put

over the set of DE targets.

The geopk calculation is a vertical integration within the dynamics calcula-
tion taking place at a point where the 2-D domain decomposition is lat-lev.
The original approach was to transpose the necessary arrays before and af-
ter this operation. As an additional optimization, a parallel algorithm which
constructs and sends partial sums ‘upward’ was developed. This method does
not require a transpose — only the communication of the partial sum to all
‘higher’ subdomains. The partial sum method gives round-off differences in
the results with different DE configurations, due to the varying order of addi-
tions. But a quadruple precision mode is available for debugging purposes to
ensure bit-wise reproducibility over all possible parallel configurations.

6 Results

The FV dynamical core was tested at both 0.5o×0.625o and 1o×1.25o horizon-
tal resolutions, containing 576 x 361 and 288 x 181 grid points, respectively.
26 vertical levels were used for both resolutions. The target platforms were the
SGI Origin 3800 Chapman (at NASA GSFC) with 1024 CPUs @ 600 MHz,
and an IBM SP Seaborg (at DOE NERSC) with 380 Nighthawk nodes, each
with 16 CPUs @ 375 MHz.

The 1-D decomposition was extensively evaluated with various numbers of

9



Table 1
The FV dynamical core (1-D decomposition) timings are given for a one-day CAM
simulation at 1o × 1.25o × 26L, run on configurations with 9, 18, 36, 45 DEs, each
running with 1, 4 or 9 OpenMP threads. The MPI-1 methods using send and re-
ceive intermediate buffers or derived datatypes, are compared with MPI-2 Method
A. The results indicate overheads for using MPI-2 one-sided communication with 1
thread, but better scalability for 4 and 9 threads than MPI-1. The OpenMP multi-
thread performance of individual computation-only components is not affected by the
communication paradigm. The increase in MPI-2 performance is thus attributable
to the multithreading in the halo exchange communication.

MPI-1 MPI-2

DEs / Buffers Types Method A

Threads (s.) (s.) (s.)

9 / 1 626 545 641

/ 4 193 194 187

/ 9 105 111 98

18 / 1 316 312 300

/ 4 112 111 102

/ 9 77 79 62

36 / 1 159 162 165

4 82 84 66

9 64 67 42

45 / 1 153 142 171

4 75 74 62

9 63 68 40

latitude slabs and OpenMP threads per slab, using different communication
primitives. Tab. 1 gives an overview of the timing results for the entire FV dy-
namical core in CAM for MPI-1 with intermediate buffers, MPI-1 with derived
datatypes, and MPI-2 method A. The benefits of MPI-2 multithreaded com-
munication are alluded to already in this comparison. Closer investigation of
the communication timings indicates excellent speedup in the halo exchange.
These results are in line with those found in [10].

Fig. 3 compares the timing percentiles of various components of CAM in which
the FV dynamical core is embedded. The figure indicates that the components
scaling the worst and best are part of the physical parameterizations, which
are outside of the dynamical core. Some physical parameterizations scale well
because they are communication-free. The land-surface model scales by far

10



Fig. 3. The performance of the overall CAM application on both a 32 and 2944
CPU configuration (IBM ‘Seaborg’) is broken down by component. The dynamical
core components cd core (without geopk), geopk, trac2d, and te map all scale
better than average. The land-surface parameterization atmlnd drv has the poor-
est scaling due to insufficient computational load; the other physical parameteri-
zations bc physics and ac physics scale better than average, in part thanks to
their communication-free nature. With the targeted optimizations, the transpose
and dp coupling-transpose do not present a performance bottleneck.

the worst and is a known bottleneck at very large processor count. All com-
ponents of the dynamical core scale reasonably to 2944 CPUs, including the
transpose, which consists entirely of communication. The worst performer is
the geopotential calculation, while the best is the cd core routine (without
geopk).

Fig. 4 illustrates the overall scalability of the CAM run, in simulated days per
day of wall-clock time. This includes all components illustrated in Fig. 3. Even
for the relatively low resolution of 1o × 1.25o × 26L the 2-D hybrid-parallel
implementation can exploit parallelism up to a large extent of the machine.

The MPI-2 multithreading capabilities of the code can also provide improved
performance if these facilities are supported by the target platform. Fig. 5
illustrates a non-negligible performance increase for the overall FV dynamical
core. The performance gains for the transpose (Tab. 2) were more modest than
those for the halo exchange, but showed a marked improvement of method B
over both method A and the MPI-1 default. The fact that one-sided commu-
nication is of less benefit to the transpose calculation is under investigation.

The partial sum optimization of geopk mentioned in Sec. 5 also achieved a
notable performance improvement. As indicated in Tab. 3, the partial sum
method (with roundoff error) performs consistently as good or better than
the transpose approach.

11



Fig. 4. The results on the IBM SP with Nighthawk 16-way nodes: the 1o×1.25o×26L
resolution illustrates the scalability of the hybrid-parallel approach on a very large
machine. Even though the resolution of this simulation can be considered low, the
2-D domain decomposition with 1 thread per DE (leftmost curve) allows parallelism
to be exploited up to 200 CPUs, with 4 subdomains in Z (center curve) up to 780
CPUs, and with 7 subdomains (longest curve) up to 1320 CPUs.

Table 2
Timings in seconds are given for the overall transpose times in a 1-day 0.5o ×
0.625o × 26L simulation on the SGI Origin 3800 with 4 vertical subdomains and
Nlat bundles of latitudes (i.e., # DEs = 4 x Nlat). MPI-2 multithreading can lead
to higher performance than the best MPI-1 method: MPI-2 method A is comparable
to MPI-1 (using derived datatypes). Method B consistently outperforms both.

MPI-1 MPI-2

Nlat Types Method A Method B

9 113 117 99.5

18 68.8 69.5 60.8

36 46.4 47.4 42.4

7 Conclusions and Future Work

We have presented a scalable parallel implementation of a finite-volume solver
of the primitive equations. This has been fully integrated into the Community
Atmosphere Model, and is available for use in the research community.

Some additional optimizations to this implementation are planned. We hope

12



Fig. 5. SGI Origin 3800 results: the wall-clock time for the overall FV dynamical
core (1-day simulation at 0.5o × 0.625o × 26L resolution) is given as a function of
the number of subdomains (DEs) using a 1-D decomposition. For 4 and 9 threads
per DE (upper and lower pair of curves, respectively), the MPI-1 (upper curve in
pair) and MPI-2 (lower curve in pair) performances are given. MPI-2, which can
take advantage of the multithreading in the communications primitives, can yield
as much as a 20% overall reduction in computation time for 4 threads, and a 33%
reduction for 9 threads.

Table 3
Timings in seconds for the geopotential calculation in geopk: the partial sum method
is as good or better than the transpose method, particularly if multiple threads per
DE are employed.

Threads pe DE

1 4 7

Transpose 59.7 51.2 36.6

Partial sum 60.0 30.1 30.3

to port the code to the Cray X1, utilizing both vector parallelism and the
SHMEM library for communication. Our primitives for irregular communica-
tion will thus be extended to use SHMEM as an option to MPI-2.

Acknowledgments We would like to thank Shian-Jiann Lin and William Put-
man for allowing us to use the OpenMP-parallel FV dynamical core and the mod comm
library as a basis for our development. We are also indebted to Dr. Jürg Schmidli
and Prof. Heinz Blatter for their careful proofreading of this manuscript.

This work was performed under the auspices of the U.S. Department of Energy

13



by the University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48, and NASA’s Goddard Space Flight Center, NASA
Task #00-9103-01a.

This is LLNL Report UCRL-PROC-208350.

References

[1] A. Arakawa and V. Lamb. A Potential Enstrophy and Energy Conserving
Scheme for the Shallow Water Equations. Mon. Wea. Rev., 109:18–36, 1981.

[2] M. B. Blackmon, B. Boville, F. Bryan, R. Dickinson, P. Gent, J. Kiehl,
R. Moritz, D. Randall, J. Shukla, S. Solomon, G. Bonan, S. Doney, I. Fung,
J. Hack, E. Hunke, and J. Hurrell. The Community Climate System Model.
BAMS, 82(11):2357–2376, 2001.

[3] P. Colella and P. Woodward. The Piecewise Parabolic Method (PPM) for Gas-
Dynamical Simulations. J. Comp. Phys., 54:174–201, 1984.

[4] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Transactions on Computational Science and
Engineering, 5(1), 1998.

[5] E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge University Press, London, 2003.

[6] S.-J. Lin. A ’Vertically Lagrangian’ Finite-Volume Dynamical Core for Global
Models. Monthly Weather Review, 2004. Accepted for publication.

[7] S.-J. Lin and R. B. Rood. Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes. Monthly Weather Review, 124(9):2046–2069, Sept. 1996.

[8] S.-J. Lin and R. B. Rood. An explicit flux-form semi-Lagrangian shallow-water
model on the sphere. Q. J. R. Meteorological Society, 123:2477–2498, 1997.

[9] MPI Forum. MPI: A message-passing interface standard. Technical Report
UT-CS-94-230, Univ. of Tennessee, 1994.

[10] W. M. Putman, S.-J. Lin, and B. Shen. Cross-Platform Performance of
a Portable Communication Module and the NASA Finite Volume General
Circulation Model. Submitted to Parallel Computing, 2004.

[11] W. Sawyer. A Multi-level Parallel Implementation of the Lin-Rood Dynamical
Core. Presentation at 8th Workshop on the Solution of Partial Differential
Equations on the Sphere, 1999.

[12] W. Sawyer and A. A. Mirin. A Scalable Implementation of a Finite-Volume
Dynamical Core in the Community Atmosphere Model. In Proceedings of
the International Conference on Parallel and Distributed Computing Systems.
IASTED, 2004. Accepted for publication.

14


